Seismic Resiliency
What a Utility Should Know to Keep the Lights On

PRESENTED BY
Robert Cochran PE,SE

NOVEMBER 7, 2018
Introduction

- Seattle City Light
 - Over 100 Years Old!
 - Serves City of Seattle
 - 700,000 Customers

- Infrastructure
 - 7 Hydroelectric Facilities
 - 150 Miles of Transmission
 - 14 Substations
 - Network Distribution

- Infrastructure Support
 - Line Crews, Steel Shop, Carpentry, Civil and Substation Crews
 - System Operation Center and Service Centers
Abstract

• Worried About the Big One?
• What about Costs to Upgrade?
• The Easy Fix?
Seismic Resiliency

• Seattle – Diverse and Growing
 • Economic
 • Educational
 • Health
 • Community Services
 • Media
 • Religious
 • Cultural
 • Government
 • Family
Seismic Resiliency

• City Life Dependent on Functional Framework
Seismic Resiliency

• Functional Framework Is Inter-dependent
Seismic Resiliency

- Framework Interaction Extremely Complex

Energy
- Federal
- State
- Local

Transportation
- Airports local/central
- Highway (state/city)
- Water (state/local)

Buildings
- Business
- Government
- Hospitals
- Education
- Residential
- Emergency Response

Communication
- Phone
- Television
- Emergency
- Internet

Water
- Local
- Municipal

Wastewater
- Local
- Municipal
• When is Functional Framework Non-Functional?
Seismic Resiliency

• Post Disaster Provisions...days, weeks, months?
• The Really Big One – The New Yorker

“When the next full-margin rupture happens, that region will suffer the worst natural disaster in the history of North America....FEMA calculates that, across the region, something on the order of a million buildings—more than three thousand of them schools—will collapse or be compromised in the earthquake.”

-Kathryn Schulz
• The Really Big One Vs Aging Infrastructure...Who Wins?
Seismic Resiliency

- System Earthquake Risk Assessment – SERA
- Many West Coast Utilities Conducting Evaluations

<table>
<thead>
<tr>
<th>Earthquake</th>
<th>Equip. Damaged</th>
<th>Damaged XFMR</th>
<th>Repair Cost (million $)</th>
<th>Outage in Days</th>
<th>Repairs in Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle Fault M7.1</td>
<td>105</td>
<td>0</td>
<td>$5-$17</td>
<td>2.1-6.8</td>
<td>19-63</td>
</tr>
<tr>
<td>S. Whidbey Island M7.0</td>
<td>98</td>
<td>4</td>
<td>$5-$24</td>
<td>2.0-8.1</td>
<td>21-92</td>
</tr>
<tr>
<td>Cascadia M9.0</td>
<td>611</td>
<td>13</td>
<td>$30-$107</td>
<td>11.2-42</td>
<td>117-410</td>
</tr>
<tr>
<td>Cascadia M8.0</td>
<td>432</td>
<td>8</td>
<td>$18-$68</td>
<td>6.8-24</td>
<td>71-263</td>
</tr>
</tbody>
</table>
• Imagine the Lights On!
 • Exceed Customers Expectation
 • Electrical Grid not Being Serviced
 • Aid to Business and Residential Recovery
 • Supporting Emergency Response of Hospitals, Fire, Police and Communications
Where or Rather When to Start?

• Earthquake Probabilities
 • 10% in 50 Years it Will Happen
 • 90% in 50 Years Says it WON'T!
 • How to Spend the Next 50 Years?

• Equipment Life
 • Typical Substation Equipment has 20-50 Year Life
 • In the Next 50 Years Equipment Will Be Replaced
 • If Each Installation Meets Seismic Criteria, in 50 Years the Substation will be Ready for the Shaker!
 • Easy Fix - START NOW!
• Setting the Standard
 • Essential Objective
 • Life Safety for Very Rare Earthquake
 • Immediate Occupancy for Rare Earthquake
 • Equipment, Design, Installation to Meet or Exceed Standard
Seismic Resiliency

- Rough Road Ahead!
 - New Approaches and Old Timers.
 - Added Cost?
 - New Construction Techniques
 - Seismic Considered Early in Project Conception
 - Communication/Education is Critical
 - Seismic Policy and Seismic Specifications!
Seismic Resiliency

Substation Seismic Upgrade Approaches

<table>
<thead>
<tr>
<th>Design Approach</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td>Low tech/cost, traditional method</td>
<td>Large force, field complications, performance?</td>
</tr>
<tr>
<td>Stiffness</td>
<td>Lower forces, minimal costs</td>
<td>Field and supplier coordination, performance?</td>
</tr>
<tr>
<td>Displacement</td>
<td>Low forces, operational performance</td>
<td>Higher first costs, displacement requirements,</td>
</tr>
<tr>
<td>Damping</td>
<td>Lower forces, less impact on existing structures</td>
<td>Raised cost? Engineering, shake table testing, detailing</td>
</tr>
</tbody>
</table>
Seismic Resiliency
Seismic Resiliency

• Strength Approach - Batteries
 • Battery Rack Replacements
 • 20 year Life
 • Specifications
 • Strength - Large Forces and Overturing Demands
 • Seismic Qualification?
 • Not Zone IV, IBC
 • Use IEEE 693 High Seismic
 • Drilling into Air?
Seismic Resiliency

• Strength Approach - Batteries
• Other Construction Surprises
 • Battery Room and Clay Partition Wall
 • Wall Hazard to Equipment
 • Strongback Required
 • Costs
 • Seismically Qualified Rack
 • Strong Back Construction
 • Schedule Delay
 • Seismic Project Review Early
• **Strength Approach - Transformers**
 - Screen
 - Evaluate
 - Fv = Sa/R/I
 - Sa1 = 0.5
 - Sa2 = 1.0
 - Sa3 = 1.5
 - R = 1
 - I = 1.5
 - Upgrade
 - IEEE 693
Seismic Resiliency

• Strength Approach – Transformers – Field Coordination
Seismic Resiliency

• Discplacement Approach - Transformers
 • Transformers – 2015 ETS Conference Paper
 • Seismic Base Isolation of High Voltage Transformer – RS Cochran
 • SCL w/ (4) Isolated Transformers
 • Isolates from Ground Motion
 • Flexible Connections
 • Floating Slab/Stair
 • Triple Friction Pendulum Bearings
Seismic Resiliency

• Stiffness Approach – Substation Expansion
 • Structures with Frequencies $f>10$ hz and Seismic Amplification
Seismic Resiliency

- Stiffness Approach – Substation Expansion
 - Footprint of Stiff Structures and Yard Mobility
Seismic Resiliency

- Stiffness Approach – Substation Expansion
 - Design Priorities
 - Stiffness $f > 33$ hz
 - Maximize Usage of Yard
 - Aesthetics
Seismic Resiliency

• Stiffness Approach – Substation Expansion
 • CADD Files Used to Cut Steel
 • Fabrication by City Light Steel Crew
Seismic Resiliency

- Stiffness Approach – Substation Expansion
 - Circuit Switcher – Qualified to 14 ft – Installation Required 20ft!
 - Fabrication by City Light Steel Crew
Seismic Resiliency

• Stiffness Approach – Substation Expansion
 • 33 hz Structures, Open Spaces Vs. the Old Forest
Seismic Resiliency

- Damping Approach – Capacitor Bank
 - Tall, Narrow, Heavy = Seismic Nightmare
 - Already Purchased/Ready to Install/Not Qualified
Seismic Resiliency

• Damping Approach – Capacitor Bank
 • Ring Spring Dampers
 • Act Like Shock Absorbers
 • Reduce Seismic Demand by 2 to 3x
 • Modified RRS per ASCE 41
Seismic Resiliency

- Damping Approach – Capacitor Bank
 - Ring Spring Damper Testing
 - Damping Characteristics
• Damping Approach – Capacitor Bank
 • Rack – Not Seismically Qualified
 • Modify Legs with Dampers
 • Construction/Design by City Light
Seismic Resiliency

• Damping Approach – Capacitor Bank
 • Install on Shims, Preload, Remove Shims
 • Damping Design Per ASCE
 • Construction/Design by City Light
Seismic Resiliency

• Building Upgrades
 • Least Cost – Structure Only - $50/SF
 • Highest Cost – Structure/Non-Structure/Occupied
 • Off Hours Construction
 • Architectural Finishes/Re-roof
 • Energy Requirement
 • Nonstructural
Seismic Resiliency

• Building Upgrades—Structural
 • Screen – ASCE 41 – 16 – Tier 1
 • Evaluate – ASCE 41 – 16 – Tier 2
 • Upgrade – IBC/ASCE 7 and/or 41
Seismic Resiliency

• Building Upgrades - Nonstructural
 • Standards
 • FEMA 74, ASCE 41, ASCE 7
 • Components
 • Partitions, Ceilings, Lighting
 • Component Bracing
 • Parapets, Cladding, Contents
 • Hazardous Material
 • Equipment – Mech/Elect
 • Equipment Supports
 • Connections/Attachments
 • Differential Displacement
Seismic Resiliency

• Building Upgrades – Construction
 • Mitigating Construction Noise and Dust
 • Working Off Hours
 • Protecting Equipment
Seismic Resiliency

• Building Upgrades – Seismic Standards and Resources
 • Design
 • ASCE 7 for New Buildings, Equipment Supports, Non-Structural
 • ASCE 41 for Existing Buildings, Equipment Supports, Non-Structural
 • ASCE Manual 113 – For Yard Equipment Supports and Foundations
 • IEEE 693 – For Ordering Substation Equipment
 • IEEE 1593 – Design of Flexible Buswork in Seismic Regions
 • FEMA – 74 for Design and Installation of Nonstructural Building Components
 • On Line Course
 • Oregon State University - Electrical Systems Resilience – 10-20 HR
 • https://pace.oregonstate.edu/catalog/electrical-systems-resilience
 • SERA
 • System Earthquake Risk Assessment
 • System Wide Evaluation
Seismic Resiliency

• Building Seismic Resilience of Utility
 • Specifications
 • Design
 • Strength
 • Stiffness
 • Displacement
 • Damping
 • Construction
Worried About the Big One?
 - Chances Are ...You Have Some Time.

Get Started
 - Seismic Policy
 - Specifications

Design Approaches
 - Strength
 - Stiffness
 - Displacement
 - Damping

The Easy Fix?
 - The Incremental Approach
Seismic Resiliency
What a Utility Should Know to Keep the Lights On

Presenting Paper Author – Robert Cochran, PE,SE

Contact Information
Email Address – robert.cochran@seattle.gov